Calando is dedicated to contributing the greater body of knowledge in biotechnology’s fight against cancer and other diseases. Please see our papers and presentations to learn more about our RNAi research as well as biotechnology and medical topics.



Davis, M. E., J. E. Zuckerman, C. H. Choi, D. Seligson, A. Tolcher, C. A. Alabi, Y. Yen, J. D. Heidel and A. Ribas (2010). "Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles." Nature 464: 1067-70.

Ribas, A., L. Kalinoski, J. D. Heidel, J. Peterkin, D. B. Seligson, J. E. Zuckerman, C. Choi, Y. Yen, M. E. Davis and A. W. Tolcher (2010). "Systemic delivery of siRNA via targeted nanoparticles in patients with cancer: Results from a first-in-class phase I clinical trial." J Clin Oncol 28(15s): abstr 3022

J Heidel, J. D. and M. E. Davis (2010). "Clinical Developments in Nanotechnology for Cancer Therapy." Pharm Res: 12 June.


Oney, S., R. T. Lam, K. M. Bompiani, C. M. Blake, G. Quick, J. D. Heidel, J. Y. Liu, B. C. Mack, M. E. Davis, K. W. Leong and B. A. Sullenger (2009). "Development of universal antidotes to control aptamer activity." Nat Med. 15(10): 1224-8.

Davis, M. E. (2009). "The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic." Mol Pharm. 6(3): 659-68.

Brahmamdam, P., E. Watanabe, J. Unsinger, K. C. Chang, W. Schierding, A. S. Hoekzema, T. T. Zhou, J. S. McDonough, H. Holemon, J. D. Heidel, C. M. Coopersmith, J. E. McDunn and R. S. Hotchkiss (2009). "Targeted delivery of siRNA to cell death proteins in sepsis." Shock. 32(2): 131-9.


Bartlett DW, Davis ME (2008). Impact of tumor-specific targeting and dosing schedule on tumor growth inhibition after intravenous administration of siRNA-containing nanoparticles. Biotechnology & Bioengineering 99(4):975-85.


Bartlett DW, Su H, Hildebrandt IJ, Weber WA, and Davis ME (2007). Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proceedings of the National Academy of Sciences 104(39):15549-54.

Mullin R (2007). Delivering RNA: Case Study #2: Two firms partner to make the active ingredient and a delivery component of a cancer therapy. Chemical & Engineering News 85(14):22-3.

Heidel JD, Yu Z, Liu JY-C, Rele SM, Liang Y, Zeidan RK, Kornbrust DJ, and Davis ME (2007). Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing RRM2 siRNA. Proceedings of the National Academy of Sciences 104(14):5715-21.

Heidel JD, Liu JY-C, Yen Y, Zhou B, Heale BSE, Rossi JJ, Bartlett DW, and Davis ME (2007). Potent siRNA inhibitors of ribonucleotide reductase subunit RRM2 reduce cell proliferation in vitro and in vivo. Clinical Cancer Research 13(7):2207-15. Bartlett DW and Davis ME (2007). Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles. Bioconjugate Chemistry 18(2):456-68.

Bartlett DW and Davis ME (2007). Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA-mediated gene silencing. Biotechnology and Bioengineering 97(4):909-21.


Heidel JD (2006). Linear cyclodextrin-containing polymers and their use as delivery agents. Expert Opinion on Drug Delivery 3(5):641-6.

Mishra S, Heidel JD, Webster P, and Davis ME (2006). Imidazole groups on a linear, cyclodextrin-containing polycation produce enhanced gene delivery via multiple processes. Journal of Controlled Release 116:179-91

Bartlett DW and Davis ME (2006). Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Research 34(1):322-33.


Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, and Triche TJ (2005). Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s Sarcoma. Cancer Research 65(19):8984-92.

Rose SD, Kim D-H, Amarzguioui M, Heidel JD, Collingwood MA, Davis ME, Rossi JJ, and Behlke MA (2005). Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Research 33:4140-56.


Heidel JD, Hu S, Liu XF, Triche TJ, and Davis ME (2004). Lack of interferon response in animals to naked siRNAs. Nature Biotechnology 22(12):1579-82.

Davis ME and Brewster ME (2004). Cyclodextrin-based pharmaceutics: past, present and future. Nature Reviews. Drug Discovery 3(12):1023-35.

Davis ME, Pun SH, Bellocq NC, Reineke TM, Popielarski SR, Mishra S, and Heidel JD (2004). Self-assembling nucleic acid delivery vehicles via linear, water-soluble, cyclodextrin-containing polymers. Current Medicinal Chemistry 11(2):179-97.



Alizadeh, D., L. Zhang, J. Hwang, T. Schluep and B. Badie (2009). "Tumor-Associated Macrophages Are Predominant Carriers of Cyclodextrin-Based Nanoparticles into Gliomas." Nanomedicine 14: 14.

Schluep, T., J. Hwang, I. J. Hildebrandt, J. Czernin, C. H. J. Choi, C. A. Alabi, B. C. Mack and M. E. Davis (2009). "Pharmacokinetics and tumor dynamics of the nanoparticle IT-101 from PET imaging and tumor histological measurements." Proc Natl Acad Sci U S A 106(27): 11394-9.

Schluep, T., P. Gunawan, L. Ma, G. S. Jensen, J. Duringer, S. Hinton, W. Richter and J. Hwang (2009). "Polymeric Tubulysin-Peptide Nanoparticles with Potent Antitumor Activity." Clin Cancer Res 15(1): 181-189.


Oliver, C. J., Y. Yen, T. Synold, T. Schluep and M. E. Davis (2008). "A dose-finding pharmacokinetic study of IT-101, the first de novo designed nanoparticle therapeutic, in refractory solid tumors." J Clin Oncol (Meeting Abstracts) 26 (May 20 suppl): 14538.

Jensen, G., J. Hwang and T. Schluep (2008). "Antitumor activity of IT-101, a cyclodextrin-containing polymer-camptothecin nanoparticle, in combination with various anticancer agents in human ovarian cancer xenografts." Proceedings of the 99th Annual Meeting of the American Association for Cancer Research: 767.

Hwang J, Rodgers K, Oliver CJ, Schluep T. (2008)“α-Methylprednisolone conjugated cyclodextrin polymer-based nanoparticles for rheumatoid arthritis therapy.” Int J Nanomedicine 3:359-71.


Zeidan, R. K., S. A. Kalovidouris, T. Schluep, R. Fazio, R. Andresini and M. E. Davis (2006). "A Solvent-Free Method for Isotopically or Radioactively Labeling Cyclodextrins and Cyclodextrin-Containing Polymers." Bioconjug Chem. 17(6): 1624-1626.

Schluep, T., J. Cheng, K. T. Khin and M. E. Davis (2006). "Pharmacokinetics and biodistribution of the camptothecin-polymer conjugate IT-101 in rats and tumor-bearing mice." Cancer Chemother Pharmacol. 57(5): 654-62. Epub 2005 Aug 26.

Schluep, T., J. Hwang, J. Cheng, J. D. Heidel, D. W. Bartlett, B. Hollister and M. E. Davis (2006). "Preclinical Efficacy of the Camptothecin-Polymer Conjugate IT-101 in Multiple Cancer Models." Clin Cancer Res 12(5): 1606-1614.


Cheng J, Khin KT, Davis ME (2004) Antitumor Activity of b-Cyclodextrin Polymer-Campthothecin Conjugates. Molecular Pharmaceutics 1: 183-193

Pun SH, Tack F, Bellocq NC, Cheng J, Grubbs BH, Jensen GS, Davis ME, Brewster M, Janicot M, Janssens B, Floren W, Bakker A (2004) Targeted Delivery of RNA-Cleaving DNA Enzyme (DNAzyme) to Tumor Tissue by Transferrin-Modified, Cyclodextrin-Based Particles. Cancer Biol Ther 3: 641-50.

Pun SH, Bellocq NC, Liu A, Jensen G, Machemer T, Quijano E, Schluep T, Wen S, Engler H, Heidel J, Davis ME (2004) Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjug Chem 15: 831-40.

Bellocq NC, Kang DW, Wang X, Jensen GS, Pun SH, Schluep T, Zepeda ML, Davis ME (2004) Synthetic Biocompatible Cyclodextrin-Based Constructs for Local Gene Delivery to Improve Cutaneous Wound Healing. Bioconjug Chem 15: 1201-1211.


Cheng J, Khin KT, Jensen GS, Liu A and Davis ME (2003) Synthesis of linear, beta-cyclodextrin-based polymers and their camptothecin conjugates. Bioconjug Chem 14(5): 1007-17.

Bellocq NC, Pun SH, Jensen GS, Davis ME (2003) Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconjug Chem 14: 1122-32.

Bellocq NC, Davis ME, Engler H, Jensen GS, Liu A, Machemer T, Maneval D, Quijano E, Hwang SJ, Schluep T, Wen SF (2003) Transferrin-Targeted, Cyclodextrin Polycation-Based Gene Vector for Systemic Delivery. Mol Ther 7: S290


Hwang Pun, S. and Davis, M.E. (2002) Development of a Nonviral Gene Delivery Vehicle for Systemic Application. Bioconjugate Chemistry 13: 630-639.


Davis, M.E. (2001) Cyclodextrin-containing Polymers for Drug Delivery. PharmaTech, 185.

Hwang, S.J., Bellocq, N.C., and Davis, M.E. (2001) Effects of Structure of beta-cyclodextrin-containing Polymers on Gene Delivery. Bioconjugate Chemistry 12(2): 280-290.

Hwang, S.J., and Davis, M.E. (2001) Cationic Polymers for Gene Delivery: Designs for Overcoming Barriers to Systemic Administration. Current Opinion in Molecular Therapeutics 3(2): 183-191.


Gonzalez, H., Hwang, S.J., and Davis, M.E. (1999) New Class of Polymers for the Delivery of Macromolecular Therapeutics. Bioconjugate Chemistry 10: 1068-1074.